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Abstract—For polar codes, the bit-flipping strategy can signif-
icantly improve performance of its successive cancellation (SC)
decoding. However, the gain derived from SC-flip (SCF) decoding
diminishes as the codeword length increases. Addressing this
issue, this paper proposes a novel hybrid perturbation-based SC
(HPSC) decoding. If the initial SC decoding fails, the algorithm
will generate multiple SC decoding attempts, each of which
introduces stochastic perturbations to the received symbols. By
soft information perturbations, the SC decoding can divert from
the initial erroneous estimation and converge to the intended one.
Our simulation results show that the proposed HPSC decoding
consistently yields stable coding gains over various codeword
lengths and rates. With the same number of decoding attempts,
the HPSC decoding outperforms the thresholded SCF (TSCF)
decoding. Moreover, it can achieve a similar performance as the
cyclic redundancy check (CRC) aided SC list (CA-SCL) decoding,
without any path sorting and expansion requirements.

Index Terms—Hybrid perturbation scheme, long polar codes,
soft information perturbation, successive cancellation decoding.

I. INTRODUCTION

OLAR codes, invented by Arkan [1], are the first channel
Pcodes that can be proven to achieve Shannon capacity
through the successive cancellation (SC) decoding. However,
in the short-to-moderate codeword length regime, SC decoding
exhibits poor performance. Addressing this issue, the SC list
(SCL) decoding [2], [3] and the cyclic redundancy check
(CRC) aided SCL (CA-SCL) decoding [4] were proposed.
The above mentioned SCL-based decoding [2]-[8] demon-
strate excellent frame error rate (FER) performance. However,
when the codeword length is large, e.g., beyond ten thousand
bits, these algorithms exhibit huge decoding computation and
memory costs. These drawbacks limit the application of SCL-
based decoders in decoding the long polar codes.

Addressing the above mentioned challenges, the SC-flip
(SCF) decoding was proposed in [9]. It freezes the possibly
erroneous bit to the opposite of its SC decoding estimations.
Afterward, an additional SC decoding attempt is performed to
re-estimate the information bits. This method works well if
the flipped bit is the true first erroneous bit (FEB). However,
constructing a flipping set (FS) that includes the true FEB
is challenging. In [9]-[14], numerous metrics were proposed
for the formation of the FS, including the ones based on
the magnitude of decision log-likelihood ratios (LLRs) [9],
and the error probability of bit estimation [10]. Since the
critical set [15]-[17] is highly likely to contain the position

of FEB in polar decoding algorithms, it is widely used as an
offline FS. In [17], the thresholded SCF (TSCF) decoding was
proposed. By utilizing the LLR-threshold, it can further reduce
the searching space for possible erroneous positions within the
critical set. Based on [10], the dynamic SCF (DSCF) decoding
was proposed [18]. It can flip multiple erroneous bits in one
decoding attempt. While the above mentioned SCF decoding
algorithms perform well, the efficiency of bit-flipping vanishes
rapidly as the codeword length increases, especially when the
codeword length exceeds 4096. For long polar codes, it also
becomes challenging to include the true FEB within a small
position of unreliable bits.

To further improve the decoding efficiency of polar codes,
the perturbation-enhanced decoding algorithm was proposed
in [19], [20]. By adding an artificial noise to the received
symbol, and trying a maximum of ten attempts, it can achieve
the decoding performance of CA-SCL decoding with a list size
of 16, using only a list size of eight. However, this method is
less effective, if the perturbation is conducted on SC decoding.

To address this issue, this paper proposes a novel hybrid
perturbation-based SC (HPSC) decoding. If the initial SC
decoding fails, the algorithm will generate extra decoding
attempts. During each attempt, subtle artificial perturbations
are doped into the received symbols. By soft information
perturbations, the SC decoding can divert from the initial
erroneous estimation and converge to the intended one. Our
numerical results show that with the same number of decoding
attempts, the HPSC decoding outperforms the state-of-the-
art TSCF decoding. Moreover, for polar codes with various
codeword lengths and rates, the HPSC decoding consistently
delivers robust performance improvements, while exhibiting a
comparable FER performance to the CA-SCL decoding.

II. PRELIMINARIES

This section provides the fundamental concepts of polar
code and its SC decoding process. Given an indexed set S with
cardinality |S|, let S[i] denote the i-th element of S. Let a]
denote the vector (a;, a1, ..,a;), @; denote the estimation
of a;, and & denote the bitwise XOR operation.

A. Polar Codes

Polar codes originate from the channel combining and
splitting, i.e., the channel polarization phenomenon [1], [21].
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Let P(N,K) denote the polar code with length N and
dimension K. After channel polarization, the K most reliable
subchannels are chosen to transmit information bits. The
remaining N — K least reliable subchannels are utilized to
transmit the redundancy, which is known as frozen bits. Let
A and A€ denote the index sets of information bits and frozen
bits, respectively, where AN A° = ().

Given a P(N, K) polar code, the N-bit message vector
ud’ ™! consists K information bits and N — K frozen bits. Its
codeword xév ~1 is generated by

)t =ul T Gy, (1)

where G = [1 9]%", @n denotes the n-th Kronecker power,
and N = 2". In this work, it is assumed that the codeword
is transmitted through the additive white Gaussian noise
(AWGN) channel, using binary phase shift keying (BPSK)
modulation. Let ¢; = 1 — 22; be the modulation. Let y5
denote the received symbol vector. That says

Yi = ¢ + Ny, )

where n; ~ N(0,0?) and o2 is the noise power. In this work,
the channel observations are represented and utilized as the
received symbol LLRs. Let £ (y;) denote the converted LLR
of received symbol y;. Note that in the AWGN channel with
BPSK modulation, it follows that £ (y;) = 2y;/o? [6].

B. SC Decoding

The SC decoding performs a greedy search and estimation
of information bits over the binary tree with n + 1 layers and
N leaves. For information bit u;, ¢ € A, its estimation is
determined by the decision LLR £ (u;). For frozen bits, they
are fixed as zero, i.e., 4; = 0, Vi € A° [1]. That says

i 1, if L(u;) <0 and i€ A,
*7 1 0, otherwise.

3)

Let us consider the SC decoder in decoding the polar code
with N = 2, which has the simplest tree structure. Initially, the
algorithm performs the f-function to obtain the decision LLR
of bit ug. This process is based on the channel observations of
the received symbols in 3, i.e., £ (yo) and £ (y1). That says

L (ug) = sign (£ (yo) - £ (y1)) - min (|£ (yo)[ , £ (y1)]) - (4)

Once 1 is obtained, the SC decoder invokes the g-function
to compute the decision LLR of u; as

L (u1) = (1 —210) - L (yo) + L (y1) - &)

In particular, when obtaining ﬁé, the estimations of codeword,
i.e., 23, can be further computed by

{ Fo = g ® Uy; ©)

I
>

X1 1-

For polar codes with NV > 2, SC decoding is performed by
recursively invoking the f and the g functions [6], [19]. This
process continues until the decision LLR of all information
bits are obtained, i.e., all leaves have been traversed.

Algorithm 1: The RPSC Decoding

Input: A, T, 03, yo L

Output: aév -L
1 ﬁév_l +— SC(A, yév_l); // Original SC decoding
2 If CRC(4) ') = true then
3 ‘ Return ﬂév_l; // Decoding successful
4 Fort <+ 0to 1. —1do
Compute y’(])vfl as in (7);
%\/—1 +— SC(A, y’év_l);
If CRC(4) ') = true then
‘ Return &évfl; // Decoding successful
// Decoding failed

5
6 // Re-decoding
7
8

9 Return aj) ~';

III. THE PERTURBATION-BASED DECODING SCHEMES

This section introduces the perturbation-based SC decoding
schemes, which can be considered particularly useful for
long polar codes. They include the random perturbation-based
SC (RPSC) decoding and the biased perturbation-based SC
(BPSC) decoding. Among them, the BPSC decoding can
efficiently correct the failed RPSC decoding estimations.

A. Random Perturbation-Based SC Decoding

Introducing perturbation or noise to received symbols so as
to enhance the belief propagation (BP) decoding performance
has been proposed by [22]. It is shown in [23]-[25] that,
through perturbing (or doping) the a prior LLRs of the least
reliable bits, the BP decoding output can re-converge to the
correct codeword (or the bit estimations). Inspired by this, this
work first proposes the RPSC decoding for polar codes.

In this paper, the CRC code is utilized for identifying
the erroneous SC decoding estimations. Let CRC(-) denote
the CRC function. In the RPSC decoding, the original SC
decoding is first performed. It then invokes the CRC to
validate the estimation @) ~'. If the validation fails, denoted
as CRC(:) = false, the algorithm performs a prespecified
number of extra SC decoding attempts. During each attempt,
the received symbol y; is perturbed by doping a random
perturbation n ~ N(0, 03), where o2 denotes the perturbation
power. Let ¢/ denote the perturbed version of y;. Based on (2),
Y, can be computed as

Yi = yi + 0. (N

Afterward, based on the perturbed 3’ éV ~1sc decoding is per-
formed to obtain the new estimations of u’ ~*. This decoding
process terminates only when the correct estimations ﬁév s
obtained, denoted as CRC/(:) = true, or all the perturbation
decoding attempts have been exhausted. Let Tp,x denote the
maximum number of predefined decoding attempts. Let SC(-)
denote the underlying SC decoding with inputs A and yév -1
The RPSC decoding is summarized as in Algorithm 1.

Fig. 1 shows performance of the RPSC decoding for
Tmax € {10,30,50,100}, where N = 4096, K = 2048 and
012, = (0.053. It can be observed that little performance gain can
be achieved when Ti,.x > 30. This is because, as a depth-first

(sub-optimal) decoding algorithm, SC decoding is prone to get
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Fig. 1. RPSC decoding performance with different perturbation attempts
Tmax € {10, 30, 50,100}, where N = 4096 and K = 2048.

trapped in the local optimal state with the same bit estimations
[1], [6]. Note that the proposed RPSC decodirjl\g ?erforms the
underlying SC decoding recursively, and y’, ~~ is derived
from yév ~1 as in (7). During different decoding attempts, the
RPSC decoding might repeatedly output the same a{)V ~1. This
drawback limits the performance of RPSC algorithm.

B. Biased Perturbation-Based SC Decoding

In order to address the above mentioned RPSC decoding
limit, this subsection proposes the BPSC decoding. It aims to
align the estimation of information bits (or the codeword) with
that of the maximum-likelihood (ML) decoding by introducing
biased perturbations. The following Lemma 1 characterizes the
ML decoding of polar codes.

Lemma 1. Consider a P(N, K) polar code with a codebook
C, the ML decoder yields the codeword that satisfies

N-1
Iy ~ = argmax

g0 > (1 —2;)ys. (8)

[ cC ;=0

Proof: The research work of [6], [26] shows that an ML
AN—1

N—-1

decoder yields the estimation £~ satisfying
N-1
20! = arg max Z InP (y; | ;), )

=¥ "teC =o
where P (y; | z;) denotes channel transition probability.

Given y)' ', Zil\:)l InP (y; | 1) can be determined [26].
Thus, we have

N-1 N-1
)1 = argmax (Z InP (y; | x;) — Z InP (y; | 1))
=0

méV*lE(C i=0
N-1
= arg max (I =)L (ys) -
x(I)V*lEC i=0
(10)
Then, (10) can be further simplified as
{N-1 N1
AN—1 _ < N E o ,
a)-“%ﬁﬁ@Eium+2§xlzmﬁw>
g i=0 =0
1D

Note that, given y)' *, Zi]i?)l L (y;) /2 can also be deter-

mined. Thus, (11) can be reformulated as

N-1
JE(])V_l = arg max Z (1 —2x;)L (y;) - (12)
zp 'eC o
Since £ (y;) = 2y;/o? and o2 > 0, we have
N-1
it = arg max Z (1 —2x;)y;. (13)
N-—-1 )
o eC ;—0
O
Lemma 1 implies that for the ML decoding, the estimation

i"(I)V ~! tends to align with the hard decisions of yév ~1. In this

case, it follows that 1 —2%; = sign(y;), where sign(-) denotes
the sign function. Let

N—-1
A@EY =Y (1= 28) yi.

i=0
The likelihood of estimations between the ML and the SC-
based decoding can be efficiently measured by A(i)!).
Therefore, it can be conjectured that for the RPSC decoding
failure, trapped in the local optimal state (as mentioned in Sec.
I1I-A), the estimation &' " corresponds to a small (&) ~!).
Moreover, it is shown in [23], [24], [27] that correcting the
erroneous symbols y; or enhancing the reliable ones both can
enhance the performance of polar decoders. Hence, this paper
proposes the BPSC decoding to further facilitate the RPSC

decoding.

Let us consider the estimation Z; disagrees with the hard
decision of y;, i.e., 1 — 2&; # sign(y;). They are also known
as the disagree bit (DB). Let D denote the index set of all

(14)

DBs between &) ' and y)' ', defined as
D={ic{0,1,....N 1} | sign(y)) # (1 - 2&)}. (15)

Note that in D, for any i < j, there exists |ypp;)| > |ypj|-

Lemma 1 implies that the DBs result in a smaller A(#y ).
This makes the estimations of RPSC decoding deviate from
those of the ML decoding. To rectify this, during the BPSC
decoding, only the unreliable received symbols identified by
the set D are doped with biased perturbations. Similar to (7),
the biasedly perturbed y; is defined as

yl=(1—2i;)-¢, i€D, (16)

where Z; is the estimation made upon the original SC decod-
ing, and ¢ denotes the magnitude of the biased perturbation.
In the BPSC decoding, the set D is first constructed based on
:ﬁév —Land yév 1 In particular, based on Lemma 1, the received
symbol y;, ¢ € D, with a larger magnitude is given priority to
be biasedly perturbed. During each decoding attempt, the algo-
rithm is performed on one of the positions in D. For instance,
in the ¢-th attempt, the received symbol y;~ is perturbed with
the value of (1 — 2+ ) ¢, where * < D|[t]. For other symbols,
ths:\;f are randomly perturbed as in (7). After that, the perturbed
Yo ~! is re-decoded through the underlying SC decoding. Let
T8 denote the maximum number of decoding attempts for

max

the BPSC decoding. Once all perturbation attempts have been
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Algorithm 2: The BPSC Decoding

Algorithm 3: The HPSC Decoding

N—1 ~N—1,,
& Yo Ty N

ax’

1 Subroutine BiasedPSC(A, Ty, o2,

2 Initialize: D + 0;

3 Construct set D as in (15);

4 | Fort«+0toT2, —1do

5 i* < DIt]; // Obtaining position
6 Yis < (1 —2&;+)-e;  // Resetting value
7 For i € {0,1,...,N —1}\ {+*} do

8 | Compute y; as in (7);

9 At SCA, vy Y, // Re-decoding
10 If CRC(4)~") = true then

11 ‘ Return aév—l; // Decoding successful
12 Return ﬁévfl; // Decoding failed

exhausted, i.e., t = Tgax, or the correct estimations is obtained,
i.e., CRC(-) = true, the decoding process is terminated. The

BPSC decoding is summarized as in Algorithm 2.

C. Hybrid Perturbation-Based SC Decoding

In order to further improve the SC decoding performance,
this paper proposes a novel hybrid perturbation-based SC
(HPSC) decoding. It contains a two-level scheme that in-
tegrates both the RPSC and the BPSC decoding. At first,
the first-level scheme, i.e., the RPSC decoding, is performed.
When the RPSC decoding is trapped in the local optimal state,
the second-level scheme, i.e., the BPSC decoding, will be
invoked. By the use of the above mentioned schemes, the
perturbation-based SC decoding can efficiently escape from
the local optimal state that containing erroneous estimations.

For the HPSC decoding, challenges lie in accurately iden-
tifying the decoding process trapped in the state of local
optimal. For this, the CRC codeword, generated by the CRC
function, is used. The CRC codes serve for two purposes. The
primary one is used as a detector for selecting the valid bit
estimations from multiple decoding candidates. On the other
hand, it can also help identify the local optima state during
the RPSC decoding process. When the CRC validation fails,
the HPSC decoding can assess whether the RPSC decoding
estimations falls into a local optimal state based on the
obtained CRC codeword. As mentioned in Sec. III-A, in this
case, the RPSC decoding has been outputting the same a{)V -1,
If the CRC codewords between two consecutive decoding
attempts are identical, the state of local optima has been
successfully identified. Thus, the BPSC decoding is invoked;
otherwise, the algorithm performs the next decoding attempts.

Let m denote the CRC codeword length, and s{' ' (t)
denote the CRC codeword in the ¢-th decoding attempt. The
proposed HPSC algorithm is summarized as in Algorithm 3.
In particular, all the above mentioned decoding schemes, i.e.,
the RPSC, the BPSC, and the HPSC algorithms, can be further
enhanced by the use of other underlying decoding algorithms,
such as the SCL decoding [2]-[8] and the BP decoding [25].

IV. SIMULATION RESULTS

This section presents the numerical results of the pro-
posed perturbation-enhanced decoding algorithms. The length-

Input: A, Tnaxs O'%, g, yé\fil;

Output: aév -L
1 Initialize: s'~*(—1) « 0;

2 {a) 1 a0 "} SC(A y) ™Y // original SC
3 If CRC(4) ") = true then

4 ‘ Return aévfl; // Decoding successful
5 For t <+ 0to T,.« — 1 do

// First-level: RPSC decoding

Compute y’évfl as in (7);

g = SC(A, y/5

If CRC(au) ') = true then
‘ Return 11(1)\[_1; // Decoding successful

10 s (t) <~ CRO(a)™"); // Storing codeword

// Second-level: BPSC decoding

11 If 571 (t — 1) = 57" '(t) then

12 aév—l < BiasedPSC(A, Thax —t —

// Re-decoding

e e N

1’ 0-12)’ E’
N—1 ~N-1,.
Yo s l'g)v 1),
13 Return i, ~; // Decoding terminated

~N—-1,

14 Return iy ~; // Decoding failed
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Fig. 2. Decoding FER performance for the P (4096, 2048 + 16) code.

16 CRC code of the 5G standard [28] is employed with
m = 16. For the P(N, K) code, its rate is R = (K —m) /N.
Polar codes with N € {1024,4096,16384} and R €
{1/3,1/2,2/3} are considered in our simulation. The informa-
tion set A is obtained through Gaussian approximation (GA)
[29] at the SNR of 2.5 dB. Moreover, it is set that ¢ = 1 and
Thmax = 15. Note that the optimized (07, ¢) depend on the code
and the channel signal-to-noise ratio (SNR) regimes, which
can be determined through Monte-Carlo simulations [19].

A. Decoding Performance

Fig. 2 shows performance of the proposed perturbation-
based decoding algorithms for the P (4096, 2048 + 16) code.
It can be observed that compared with the conventional SC
decoding, all three proposed algorithms can achieve significant
performance gains. In particular, performance of the HPSC
decoding is superior to that of the RPSC decoding and that
of the BPSC decoding. Therefore, the following analyses
will focus on the HPSC decoding. As illustrated in Fig. 2,
the proposed HPSC decoding outperforms the state-of-the-art
TSCF decoding in [17]. Moreover, it can achieve a similar
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Fig. 3. Decoding performance of the HPSC decoding for long polar codes.
(a) various codeword lengths NV € {1024, 16384} and R = 1/2; (b) various
rates R € {1/3,2/3} and N = 4096.
error-correction performance as the CA-SCL decoding with
the list size of two, i.e., L = 2.

Fig. 3 shows performances of the HPSC decoding for
various codeword lengths and rates. Fig. 3(a) shows decoding
performance of the proposed HPSC algorithm for long polar
codes, where N € {1024,16384} and R = 1/2. It can be
observed that, compared with the TSCF decoding, the HPSC
decoding still yields better performances in the longer code-
word length regime, e.g., N € {4096, 16384}. This is because,
for the SCF-based decoding, only when the FEB has been
corrected, its FER performance will be improved. However,
for long polar codes, it becomes challenging to accurately
correct the true FEB with a small number of flipping attempts,
e.g., Thax < 15. In contrast, the HPSC decoding perturbs the
received symbols yév ~1 without the need for identifying the
erroneous u;. Fig. 3(b) shows the FER performance of HPSC
decoding for various rates R € {1/3,2/3}, where N = 4096.
It can be seen that the HPSC decoding achieves performance
comparable to the CA-SCL decoding (L = 2) over all rates.
Unlike the CA-SCL decoding, it does not need to perform
path sorting. Based on Figs. 2 and 3, it can be concluded
that, compared with the bit-flipping strategy, the proposed
perturbation-based decoding scheme, i.e., the HPSC decoding,
can provide robust performance improvements under various
lengths and rates when decoding the long polar codes.

B. Decoding Complexity and Latency

For the proposed HPSC decoding, computational complex-
ity is composed by the complexity of the underlying SC
decoding, and that of constructing the DB set D. According
to [13], the complexity of selecting Tp,x elements from an
ordered set D is Tiax (|D| — 1). Let Ty, denote the average
number of perturbation attempts in the HPSC decoding. The
average complexity of HPSC decoding is

Qupsc = Tavg - Nlogy (V) + Thax - (|D] — 1), a7

where |D| € [Thax, V], and O (N log, N) denotes the com-
plexity of SC decoding [1], [30]. Moreover, in the worst-case,
complexity of the HPSC decoding is O (TaxV logy N), ie.,
Thax times that of the SC decoding.

- m-sc
- O- CA-SCL; L=2
- A - TSCF; T, = 15

€
»

Normalized Average Complexity
® >

04 0.8 1.2 1.6 2.0 24
SNR (dB)

Fig. 4. Normalized complexity in decoding the P (4096, 2048 4 16) code.

TABLE I
AVERAGE LATENCY IN DECODING THE P (4096, 2048 + 16) CODE
SNR (dB)

Polar Decoder Tinax i 3 5 735
SC [30] — 8,190 8,190 8,190 8,190
CA-SCL [4] L =2 10,238 10,238 | 10,238 | 10,238
TSCF [17] 15 117,138 | 40,359 | 9,828 8,222
Proposed HPSC 15 114,609 | 30,187 | 9,235 8,222

Fig. 4 shows the normalized average complexity in decoding
the P (4096, 2048 + 16) code, where the normalization factor
is Nlog,N. For the CA-SCL decoding, the computational
complexity of path sorting is 2K Llog, (2L) [6]. As illustrated
in Fig. 4, the complexity of HPSC decoding is still lower than
that of the TSCF decoding. In the high SNR regime (e.g.,
SNR > 2 dB), the complexity of HPSC decoding reduces to
that of the SC decoding. Compared with the CA-SCL decoding
(L = 2), the HPSC decoding can reduce complexity by more
than half, but without degrading the decoding performance.

In this paper, decoding latency is measured by the number
of required clock cycles (CCs) [8], [30]. The SC decoding
requires 2N — 2 CCs [30]. For the proposed HPSC decoding,
in each perturbation decoding attempt, it requires one CC to
perform the CRC validation (lines 8 to 10 in Algorithm 3).
Moreover, for the process of generating set D, it requires an
additional CC. Thus, the average latency of HPSC decoding
is defined as

Tapsc = Tavg - (2N — 1) + 1. (18)

Note that when T,y; = Tinax + 1, Tapsc denotes the decoding
latency in the worst-case.

Table 1 shows the average latency in decoding the
P (4096, 2048+ 16) code. It can be noticed that compared with
the TSCF decoding, the HPSC decoding requires fewer CCs,
while maintaining a better FER performance. While compared
with the CA-SCL decoding [4], the HPSC decoding yields a
significant decoding latency advantage. E.g., when SNR = 2.5
dB, the CA-SCL decoding (L = 2) requires 10,238 CCs. In
comparison, the HPSC decoding (T1,x = 15) requires only
8,222 CCs, reaching a CC reduction of 20%.
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